Какая толщина земной коры под океанами
Перейти к содержимому

Какая толщина земной коры под океанами

  • автор:

Какова толщина земной коры?

Земная кора представляет из себя твёрдую оболочку (геосферу), уже ниже земной коры находится мантия. Вся масса земной коры составляет всего лишь около 0,5% от общей массы планеты. Толщина земной коры на разных участках земли разная, от 5-7 километров до 120-130 километров.

текст при наведении

Толщина земной коры не равномерная, они меняется от 5 до 130 километров.Самая тонкая часть находится на дне океана, самая широкая, как можно догадаться, в горах. Можно посчитать среднюю длину, сложив 5 и 130 и затем поделив пополам. Получится 67,5 км. Но это достаточно условно.

Земная кора это даже нетонкая корочка, это пленка, подобная той, что образуется на кипяченном молоке и предохраняет это молоко от быстрого остывания. Стоит порвать эту пленку и молоко моментально становится холодным. Так и земная кора предохраняет Землю от напрасной траты внутреннего тепла, которое пока существует, дарит жизнь всем обитателям планеты. Толщина земной коры равна 35-70 километров под материками и всего 7-10 километров в океане. Неудивительно, что подводных вулканов в разы больше чем вулканов на материках. Диаметр Земли больше 12 тысяч километров, так что же такое кора, как не тонкая пленка?

Толщина земной коры

текст при наведении

Есть два типа земной коры — океаническая кора и континентальная кора. Континентальная кора состоит в основном из светлых гранитных пород. Океаническая кора состоит из темных базальтовых пород. Одно из основных отличий между ними в плотности. Континентальная кора имеет среднюю плотность 2,6 г/см3, тогда как океаническая кора — 3 г/см3. В связи с этим средняя высота континентов составляет 600 метров над уровнем моря, средняя высота (глубина) океанического дна — 3000 метров ниже уровня моря.

Средняя толщина земной коры в океане — 5-10 километров. Средняя толщина континентальной земной коры — 35 километров, но может доходить до 70 километров.

Источник: World of Earth Science (Volume 1, A — L), K. Lee Lerner and Brenda Wilmoth Lerner, Editors

Наша Земля покрыта корой, словно огромной скорлупой, состоящей из горных порд. Внутренние силы необыкновенной мощности постоянно изменяют её поверхность: формируются новые океаны, поднимаются горы, разверзаются огромные бездны. Земная кора деформируется вследствие землетрясений и извержений вулканов. производились замеры толщины земной коры. Таким образом, толщина земной коры под океаном оказалась равной 5 км, под материками ее толщина достигает 30-40 км, а под высокими горами, на суше — 60-70 км.

Нельзя назвать точную величину толщины земной коры, которая бы была одинакова для всех участков земной поверхности. Дело в том, что она различна для материков и океанов. Толщина земной коры под океаном составляет 5-10 километров, причем она уменьшается вместе с глубиной. Средняя же толщина земной коры на материках составляет 35-45 километров,а в горных областях достигает величины в 70 километров.

Толщина земной коры в разных местах Земли разная. Так, под океаном толщина земной коры составляет 5 километров как минимум. Несмотря на свое название, кора довольно-таки толстая. Где-то есть и 70 километров (это там, где горы).

Толщина земной коры неодинаковая на всех участках земли. Минимальная толщина под морями и океанами — в пределах 5 километров. А максимальная — на материковой части и может достигать и 70 километров (это в горных областях).

текст при наведении

Толщина земной коры различна на разных участках поверхности. Например, на океанических территориях толщина земной коры всего несколько километров, а в горных областях она может достигать нескольких десятков километров.

По сведениям, а точнее предположениям научного сообщества толщина земной коры на разных участках земли от 7 до 70 километров. Под океанами в местах вулканической активности кора тоньше, на суше толще.

Толщина земной коры не постоянная величина. Она отличается в разных районах земного шара. Например в океанических областях она составляет несколько километров, а в горных районах материков доходит до нескольких десятков километров.

Из теории, существующей уже более 300 лет следует, что нынешние континенты в своё время "слились" и образовался один гигантский материк, которому исследователи дали имя — Пангея (от греч. «вся земля»). Из за до сих пор не выясненных причин, где то 200 миллионов лет назад, Пангея снова стала дробиться. Сначала северная половина Пангеи (из которой потом образовались Европа,Северная Америка, и часть Азии) отошла от южной (включавшей Австралию, Южную Америку, Индию, Антарктиду и Африку). Затем стали образовываться новые гигантские трещины, называемые рифтами, и эти два массива суши разбились на современные континенты.

Двигаясь вместе с литосферными плитами, эти массивы постепенно заняли положение, которое мы видим сегодня. Впрочем, материки продолжают двигаться и в наше время. Европа и Северная Америка незаметно, удаляются друг от друга. Следовательно расширяется Атлантический океан. А Красное море находится в молодой ещё рифтовой зоне земной коры, и со временем скорее всего станет океаном, возможно шире Атлантического, при условии, что на его дно будет продолжать изливаться из недр Земли новый вулканический материал.

Толщина земной коры и ее связь с рельефом дна океанов

До последнего времени представления о толщине земной коры под дном океанов опирались на довольно редкие профили сейсмических исследований глубинной структуры.

Некоторые данные о возможной толщине коры под дном океанов были получены В. Ф. Бончковским на основании изучения поверхностных волн землетрясений.

Р. М. Деменицкая, разработав новый метод определения толщины земной коры, основанный на известных связях ее с аномалиями силы тяжести (в редукции Буге) и с рельефом земной поверхности, построила схематические карты распределения толщины земной коры материков и океанов. Судя по этим картам, толщины земной коры в океанах таковы.

В Атлантическом океане, в пределах материковой отмели, толщина коры варьирует от 35 до 25 км. Она не отличается от таковой в прилегающих частях материка, так как материковые структуры непосредственно продолжаются на шельфе. В области материкового склона по мере возрастающей глубины толщина коры уменьшается от 25—15 км в верхней части склона до 15—10 и даже менее 10 км — в нижней его части. Дно котловин Атлантического океана характеризуется корой небольшой толщины — от 2 до 7 км, но там, где она слагает подводные хребты или плато, мощность ее возрастает до 15—25 км (Бермудское подводное плато, Телеграфное плато).

Сходную картину мы видим и в Арктическом бассейне Северного Ледовитого океана с толщиной коры от 15 до 25 км; только в его центральных частях она менее 10—5 км. В бассейне Скандик толщина коры (от 15 до 25 км) отличается от типичной для океанических бассейнов. На материковом склоне мощность коры меняется так же, как и в Атлантическом океане. Такую же аналогию мы видим и в коре материковой отмели Северного Ледовитого океана с толщиной коры от 25 до 35 км; она утолщается в море Лаптевых, а также в смежных частях Карского и Восточно-Сибирского морей и далее на хребте Ломоносова. Возможно, что увеличение толщины коры здесь связано с распространением молодых — мезозойских складчатых структур.

В Индийском океане сравнительно мощная кора (более 25 км) в Мозамбикском проливе и отчасти восточнее Мадагаскара до Сейшельского хребта включительно. Срединный хребет Индийского океана по толщине коры не отличается от Срединного Атлантического хребта. Относительно малой толщиной коры отличаются южная часть Аравийского моря и Бенгальский залив, несмотря на их сравнительную молодость.

Некоторыми особенностями характеризуется толщина земной коры в Тихом океане. В Беринговом и Охотском морях толщина коры более 25 км. Она имеет меньшую мощность только в южной глубоководной части Берингова моря. В Японском море мощность резко сокращается (до 10—15 км), в морях Индонезии снова возрастает (более 25 км), оставаясь такой и южнее — до Арафурского моря включительно. В западной части Тихого океана, непосредственно прилегающей к поясу геосинклинальных морей, преобладают толщины от 7 до 10 км, но в отдельных понижениях океанического дна они уменьшаются до 5 км, в районах же подводных гор и островов возрастают до 10—15 и нередко до 20—25 км.

В центральной части Тихого океана — области наиболее глубоководных бассейнов, как и в других океанах, мощность коры наименьшая — в пределах от 2 до 7 км. В отдельных понижениях океанического дна кора имеет и меньшую толщину. В наиболее возвышенных частях океанического дна — на срединных подводных хребтах и прилегающих к ним пространствах мощность коры увеличивается до 7—10 км. Такие же толщины коры свойственны восточной и юго-восточной частям океана по простиранию Южно-Тихоокеанского и Восточно-Тихоокеанского хребтов, а также подводному плато Альбатрос.

Карты толщины земной коры, составленные Р. М. Деменицкой, дают представление о суммарной мощности коры. Для выяснения строения коры нужно обратиться к данным, полученным посредством сейсмических исследований.

Земная кора в цифрах.

Земная кораЗемная кора – часть литосферы, самая верхняя из твердых оболочек Земли. Все цифры, относящиеся к земной коре, в этой статье. Состав земной коры, возраст, толщина, плотность, химический состав земной коры и т.д.

На долю земной коры приходится 1% от общей массы Земли.

Толщина твердой коры очень невелика: от 10 км под океанами до 80 км под горными хребтами на материках.

  • Нижняя граница земной коры проходит по границе (поверхности) Мохоровичича – зоне, в которой происходит резкий скачок скоростей сейсмических волн. Продольных с 6,7-7,6 км/сек до 7,9-8,2 км/сек., а поперечных – с 3,6-4,2 км/сек до 4,4-4,7 км/сек.
  • В настоящее время на поверхности Земли выделяют 6 крупных массивов земной коры — континентов, выступающих над уровнем Мирового океана: Евразию (55 млн. км 2 ), Африку (30 млн. км 2 ), Северную Америку (24 млн. км 2 ), Южную Америку (18 млн. км 2 ), Антарктиду (14 млн. км 2 ) и Австралию (8,5 млн. км 2 ).
  • Примерно 75 % поверхности материков покрыто осадочными породами, хотя эти породы составляют примерно 5 % земной коры.
  • Средний химический состав литосферы: кислород — 49,4 %, кремний — 25,8 %, алюминий — 7,5 %, железо — 4,7 %, — углерод — 0,087%.
  • Состав континентальной коры несколько иной: кислорода — 45,2 %; кремния — 27,2%; алюминия — 8,0 %; железа — 5,6 %; кальция — 5,1 %; магния — 2,8 %; натрия — 2,3 %; калия — 1,7 %; титана — 0,9%; остальных элементов около 1 %.
  • Средняя плотность земной коры — 2,80 г/см 3 .
  • Возраст большей части океанского дна меньше 100 млн лет.
  • Древнейшая океаническая кора расположена в западной части Тихого океана, а её возраст составляет примерно 200 млн лет. Для сравнения, возраст старейших ископаемых, найденных на суше, достигает около 3 млрд лет.
  • Центр масс Земли смещается предположительно со скоростью 6,47 см в век.
  • Большая часть земной поверхности, около 90%, покрыта 14 основными литосферными плитами.
  • Отдельные части (блоки) литосферы смещаются независимо друг от друга за миллионы лет на сотни и тысячи километров.
  • Литосферные блоки в поперечнике составляют 1-10 000 км, а толщина их варьируется от 60 до 100 км.
  • На участках опускания литосферные плиты погружаются в мантию на глубину до 660 км.
  • Россия расположена на четырех литосферных плитах.
  • Самый крупный материковый разлом длиной более 4000 км и шириной 80-120 км находится в Африке.
  • На сегодня общая площадь культивируемых земель составляет 13,31 % поверхности суши, из которых лишь 4,71 % постоянно заняты сельскохозяйственными культурами.
  • Примерно 40 % земной суши сегодня используется для пахотных угодий и пастбищ, это примерно 1,3·10 7 км² пахотных земель и 3,4·10 7 км² пастбищ.

Таблица 1. Химический состав земной коры на глубинах 10 — 20 км.

II. Основные особенности строения земной коры под океанами

Для построения полноценной генетической классификации рельефа кроме морфологических признаков необходимы также данные о внутреннем строении классифицируемых объектов.

Известно, что Земля в разрезе имеет слоистую структуру. Внешнюю, твердую оболочку, сложенную кристаллическими и осадочными породами и образующую поверхность нашей планеты, называют земной корой. Геофизические исследования в океанах показали, что земная кора под океанами неодинакова по строению и мощности. Нижней границей земной коры считают поверхность Мохоровичича. Она выделяется по резкому возрастанию скоростей продольных сейсмических волн до 8 км/с и более. В пределах земной коры скорости упругих волн ниже этой величины. Ниже поверхности Мохоровичича располагается верхняя мантия Земли.[4]

Выделяется несколько типов земной коры. Наиболее резкие различия отмечаются в строении земной коры материкового и океанического типов.

2.1. Земная кора материкового типа.

По модели, предложенной Уорзеллом и Шербетом в 1965, средняя мощность земной коры материкового типа 35 км. По скорости распространения упругих волн в ней выделяют три слоя:

1) осадочный (скорости менее 5 км/с, мощность от нескольких сотен метров до 2 км);

2) гранитный (скорости около 6 км/с, мощность 15 – 17 км) и

3) базальтовый (скорости 6,5 – 7,2 км/с, мощность 17 – 20 км).

Отличительным слоем материковой коры является гранитный с плотностью вещества 2,7 г/см3.

В геофизических работах обычно подчеркивается условность названий слоев «гранитный» и «базальтовый». Гранитный слой не обязательно состоит только из гранитов. Скорости прохождения упругих волн через него указывают лишь на то, что он состоит из пород, аналогичных по плотности гранитам, – гнейсов, гранодиоритов, кварцитов и некоторых других плотных кристаллических пород (магматических и метаморфических), объединяемых обычно под названием «кислые» породы вследствие значительного содержания в них (более 60%) кремнекислоты.

Скорость сейсмических волн в базальтовом слое свидетельствует о том, что он сложен породами, имеющими плотность 3,0 г/см3. Эта плотность соответствует базальтам, а также другим основным породам (габбро и др..), которые отличаются пониженным содержанием кремнезема (менее 50%) и повышенным – окислов различных металлов.

Материковая кора широко представлена в пределах морей и океанов. Она слагает шельф, материковый склон, характерна для материкового подножия. В среднем нижняя граница ее распространения проходит примерно в пределах изобат 2 – 3,5 км, но местами отклонения от этой глубины весьма велики. Так, у подводной окраины Североамериканского материка в Атлантическом океане граница материковой коры находится на глубине более 4 км, а в Черном море – порядка 1800 м.

2.2. Океанический и рифтогенальный типы земной коры.

Земная кора океанического типа в общем виде характеризуется следующим строением (см. рис.2). Верхнюю ее часть составляет слой воды океана со средней толщиной 4,5 км и скоростью упругих волн 1,5 км/с, плотностью 1,03 г/см3. За ним следует слой неуплотненных осадков мощностью 0,7 км, со скоростью упругих волн 1,5 – 4,5 км/с и средней плотностью 2,3 г/см3. Под этим слоем залегает так называемый второй слой со средней мощностью 1,7 км, скоростью упругих волн 5,1 – 5,5 км/с и плотностью 2,55 г/см3. Под ним лежит базальтовый слой, по существу не отличающийся от того, который образует нижнюю часть континентальной коры. Средняя мощность его 4,2 км. Таким образом, общая средняя мощность океанической коры без слоя воды всего 6,6 км, т. е. примерно в 5 раз меньше мощности материковой коры. Существенных различий в строении океанической коры под различными океанами не наблюдается.

Под срединно-океаническими хребтами земная кора настолько специфична по строению, что ее следует выделить в качестве особого типа. Под срединным хребтом Атлантического океана выделяется довольно тонкий и непостоянный по простиранию слой рыхлых осадков, залегающий главным образом в понижениях между гребнями и грядами срединного хребта. Ниже следует слой со скоростями упругих продольных волн 4,5 – 5,8 км/с. Мощность его очень изменчива – от нескольких сотен метров до 3 км. Под ним залегают породы повышенной плотности со скоростями продольных волн 7,2 – 7,8 км/с, т. е. значительно большими, чем в базальтовом слое, но меньшими, чем на границе Мохоровичича. Последняя практически здесь не выделяется. Складывается впечатление, что под срединными хребтами земная кора не имеет четко выраженной нижней границы и в целом образована более плотным веществом, чем базальтовый слой океанической коры.[7]

Высказывается предположение, что земную кору под срединными хребтами слагают видоизмененные разуплотненные породы верхней мантии, которые здесь как бы частично замещают базальтовый слой. Полагают, что гребни срединных хребтов представляют собой зоны развития рифтовых структур, образующихся в результате нарушений земной коры под мощным давлением восходящих потоков вещества из верхней мантии. Бурение в областях гребней срединных хребтов показало, что здесь распространены и базальты, и ультраосновные серпентинизированные породы, слагающие верхнюю мантию. Таким образом, повышенная плотность нижнего слоя может быть объяснена смешением материала базальтового слоя и верхней мантии. Описанные свойства характеризуют глубинное строение срединных хребтов и их гребневой части. По мере удаления от нее крылья или фланги хребта постепенно утрачивают эти свойства, происходит постепенный переход к типичной океанической коре.

В последнее время на фоне возрастающей популярности гипотезы «новой глобальной тектоники» намечается тенденция к пересмотру взглядов на происхождение и состав океанической земной коры, к поискам ее генетической связи с процессами, происходящими в рифтовых зонах срединно-океанических хребтов. По этим представлениям, океаническая кора имеет не базальтовый, а серпентинитовый состав и формируется в рифтовых зонах срединно-океанических хребтов постепенно, в ходе расползания плит литосферы в обе стороны от рифтовой зоны, распространяясь на все пространство ложа океана. Безоговорочному признанию этих представлений препятствуют некоторые довольно веские данные. В частности, трудно объяснить, почему слой с повышенной плотностью (7,2 – 7,8 км/с) не имеет сплошного распространения в пределах ложа океана, а встречается лишь в рифтовых зонах срединных хребтов и под некоторыми (но не срединными) поднятиями дна, если в формировании океанической коры участвуют главным образом продукты серпентинизации ультраосновных пород.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *